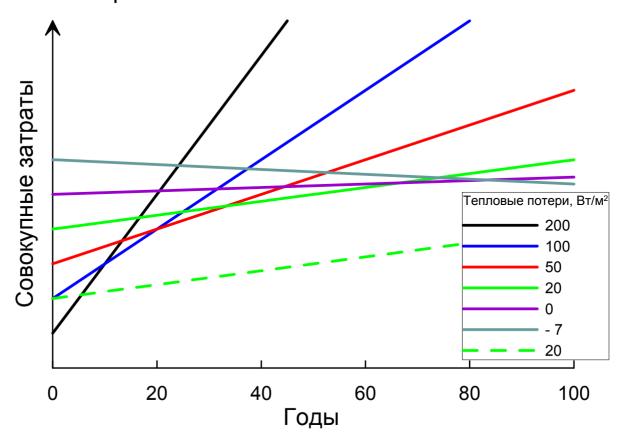


Технология строительства пассивных, устойчивых в ЧС малоэтажных зданий из монолитного полистиролбетона


Концепция строительства

Существующие на сегодня подходы к строительству таковы, что не позволяют одновременно выполнить основные требований предъявляемые к современным зданиям. Такие как:

- 1. Обеспечение комфортных условий проживания
- 2. Увеличении устойчивости зданий и сооружений к ЧС природного и техногенного характера
- 3. Обеспечение экономически обоснованной сметной стоимости строительства
- 4. Снижение затрат на содержание жилья в процессе эксплуатации
- 5. Экологичность

Концепция строительства

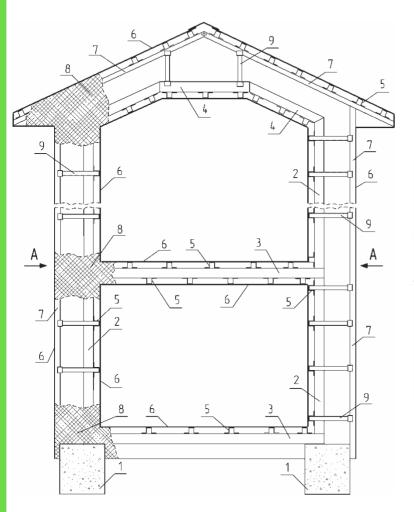
Нами разработана концепция строительства малоэтажного жилья, которая позволяет обеспечить гибкий подход к возведению зданий и сооружений практически ЛЮБОГО уровня энергоэффективности при обеспечении комфортности и устойчивости к ЧС, в зависимости от предъявляемых требований.

Концепция строительства

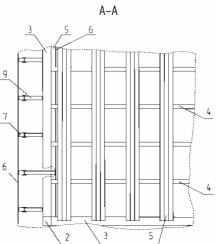
Концепция предполагает реализацию комплексного подхода к проектированию и строительству, который основан на:

- проектировании с учетом требований к желаемому соотношению капитальных и эксплуатационных затрат, основанному на предварительной оценке различных вариантов строительных конструкций и инженерного оснащения;
- применении эффективных инновационных строительных технологий;
- использовании обоснованных инженерных решений для управления энергоэффективностью и поддержания комфортных условий микроклимата;
- применение наиболее подходящих материалов ограждающих конструкций.

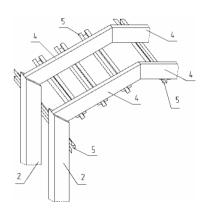
Технология строительства


Для реализации концепции мы предлагаем технологию строительства «без несущих стен», имеющих два стальных каркаса с последующей монолитной заливкой модифицированным полистиролбетоном в несъемной опалубке.

Данная технология обеспечивает:


- низкие капитальные затраты на организацию строительства;
- низкую себестоимость строительства;
- высокие темпы строительства;
- возможность различных архитектурных и планировочных решений;
- высокое качество недорогой отделки;
- высокую энергоэффективность, которая позволяет снижать затраты на инфраструктуру и обеспечить низкие эксплуатационные затраты;
- повышенную устойчивость зданий к природным и техногенным воздействиям, что приводит к увеличению срока эксплуатации.

Патент на изобретение RU № 2503781


Малоэтажное быстровозводимое энергоэффективное сейсмоустойчивое каркасное здание

Конструкция малоэтажного здания основана на применении двух независимых стальных каркасов, несъёмной опалубки и монолитного заполнения полистиролбетоном фундамента, всех стен, перекрытий и мансардной крыши.

Устройство перекрытия

Устройство мансарды

1 – фундамент, 2 – колонна внутреннего каркаса, 3 – ригель внутреннего каркаса, 4 – балка перекрытия, 5 – гнутый профиль, 6 – лист опалубки, 7 – внешний каркас, 8 – лёгкий бетон, 9 – временный фиксатор.

Малоэтажное быстровозводимое энергоэффективное сейсмоустойчивое каркасное здание

Сущность предлагаемой технологии в том, что здание состоит из двух стальных каркасов.

Внутренний несущий каркас здания: колоны, ригеля и сформированные межэтажные перекрытия выполнены из металлических труб прямоугольного сечения, скреплённых между собой с помощью сварки и дополнительно винтовыми соединениями или заклепками, заполненных тяжелым или лёгким бетоном, где параметры трубы и марка бетона определяется исходя из высоты здания и длины пролётов. Это даёт возможность реализовать практически любую планировку этажа, причём различную на каждом этаже. Высоты этажей так же могут быть различными в одном здании.

Внешний каркас здания служит для крепления листов опалубки и, по необходимости, облицовочных фасадных элементов и установлен на таком расстоянии от внутреннего, чтобы обеспечить требуемые параметры теплозащиты.

Применение данной технологии возможно так же при надстройки мансардных этажей, используя в качестве фундамента несущие конструкции раннее построенного или санируемого здания.

Здание построенное по данной технологии

Фундамент – единая монолитная плита

Несущие колонны внутреннего каркаса

Соединение колонн с ригелями

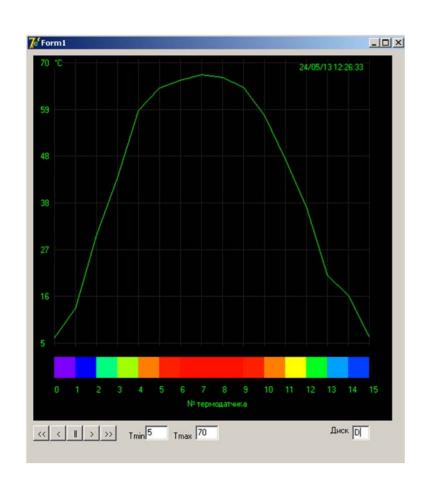
Устройство межэтажных перекрытий

Устройство мансардного этажа

Устройство мансардной крыши

Устройство коммуникаций

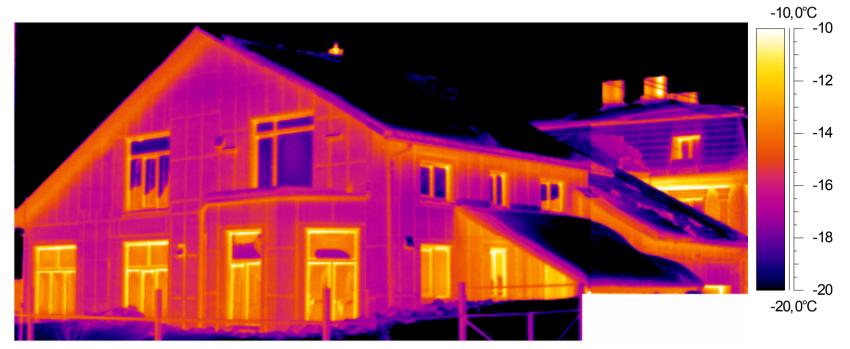
Устройство наружной стены здания

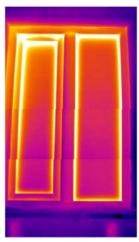



Мониторинг распределения температуры внутри ограждающих конструкций

Установка системы термодатчиков для контроля состояния ограждающих конструкций и управления параметрами микроклимата

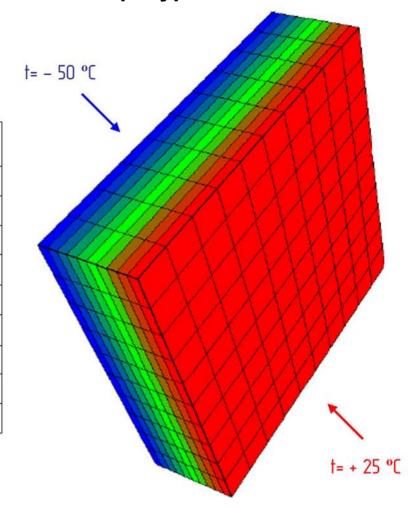
Мониторинг распределения температуры внутри ограждающих конструкций




Контроль технологического процесса заливки ПСБ

Контроль состояния ограждающих конструкций в ходе эксплуатации

Тепловизионная съемка фасада коттеджа



Монолитный полистиролбетон D-200 в ограждающих конструкциях стен

Расчет тепловых потерь

Толщина стен, мм	Сопротивление $\frac{M^2 \times {}^{\circ}C}{Bm}$	Тепловой поток, Вm/м ²
300	4,0000	18,7500
350	4,6667	16,0714
400	5,3333	14,0625
450	6,0000	12,5000
500	6,6667	11,2500
550	7,3333	10,2273
600	8,0000	9,3750
650	8,6667	8,6538
700	9,3333	8,0357

Температурные поля

Сертификаты, протоколы испытаний, ТУ, патенты

Протокол испытаний полистиролбетона на горючесть - НГ

Протокол испытаний конструкции стены

Пожарный сертификат на конструкцию стены - EI 60

Технические условия на полистиролбетон

Патент на изобретение

Патент на полезную модель

III Международный форум Энергоэффективность и энергосбережение

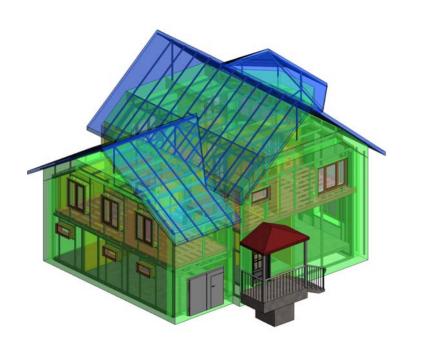
МИНИСТЕРСТВО ЭНЕРГЕТИКИ

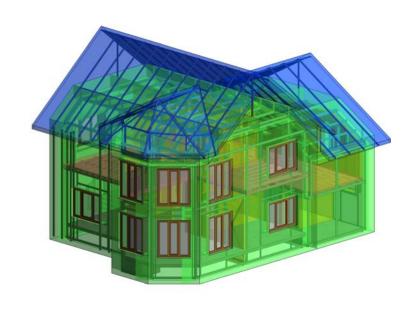
ПЕРВЫЙ ВСЕРОССИЙСКИЙ КОНКУРС ПРОЕКТОВ В ОБЛАСТИ ЭНЕРГОСБЕРЕЖЕНИЯ И ЭНЕРГОЭФФЕКТИВНОСТИ

Москва, ВК Гостиный двор, 20-22 ноября 2014г.

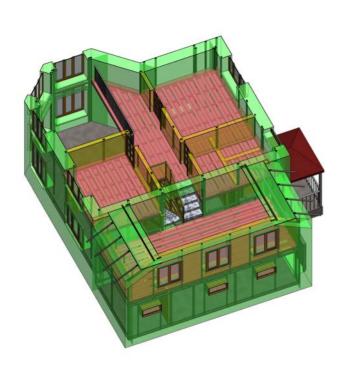
Конкурентные преимущества:

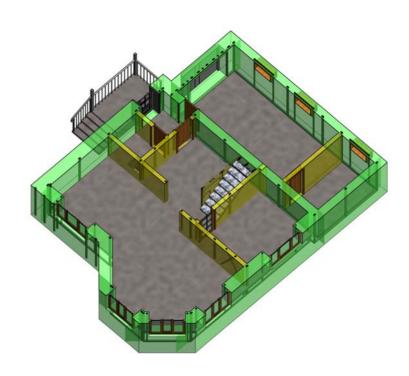
Для собственника жилья:


- реализовать практически любую планировку этажа, высоту помещения и архитектуру здания;
- построить здание с требуемым классом энергосбережения;
- отказаться от традиционных систем отопления;
- применить большую площадь остекления;
- поддерживать оптимальные параметры микроклимата;
- оптимизировать соотношение капитальных и эксплуатационных затрат;
- осуществлять длительную эксплуатацию здания за счет долговечности конструкций и уникальных свойств используемых материалов.


Конкурентные преимущества:

Для застройщика:


- использовать под строительство малоподготовленные площадки;
- снизить затраты на логистику строительных материалов;
- уменьшить издержки из-за сокращения номенклатуры строительных материалов;
- исключить нетехнологичные и/или недолговечные материалы, такие как бетон, раствор, кирпич, блоки, стальную арматуру, дерево, утеплители и т.д.;
- предоставлять гарантии на построенные объекты более 5-ти лет.


 Для девелопера:
- кратно повысить рентабельность проекта за счёт сокращения сроков строительства (3 месяца).

Проект выполнен в ВІМ (Информационная модель здания)

Проект выполнен в ВІМ (Информационная модель здания)

ООО «ГСС – Алтай»

Проектный отдел

Свидетельство о допуске к определенному виду или видам работ, которые оказывают влияние на безопасность объектов капитального строительства № 1049, СРО-П-174-01102012 от 07.10.2014г.

Заказчик:

Энергоэффективный каркасный двухэтажный жилой дом

по адресу: Томская обл., Томский р-н, д. Кисловка

ПРОЕКТНАЯ ДОКУМЕНТАЦИЯ

Раздел 3. Архитектурные решения

12-15-AP TOM 3

Автор и патентообладатель технологии: Шефер Ю.В. Патент на изобретение № 2503781

Томск 2016г.

БЛАГОДАРИМ ЗА ВНИМАНИЕ!